Hypusination of eukaryotic initiation factor 5A (eIF5A): a novel therapeutic target in BCR-ABL-positive leukemias identified by a proteomics approach.
نویسندگان
چکیده
Inhibition of BCR-ABL tyrosine kinase with imatinib represents a major breakthrough in the treatment of patients with chronic myeloid leukemia (CML). However, resistance to imatinib develops frequently, particularly in late-stage disease. To identify new cellular BCR-ABL downstream targets, we analyzed differences in global protein expression in BCR-ABL-positive K562 cells treated with or without imatinib in vitro. Among the 19 proteins found to be differentially expressed, we detected the down-regulation of eukaryotic initiation factor 5A (eIF5A), a protein essential for cell proliferation. eIF5A represents the only known eukaryotic protein activated by posttranslational hypusination. Hypusination inhibitors (HIs) alone exerted an antiproliferative effect on BCR-ABL-positive and -negative leukemia cell lines in vitro. However, the synergistic dose-response relationship found for the combination of imatinib and HI was restricted to Bcr-Abl-positive cells. Furthermore, this synergistic effect was confirmed by cytotoxicity assays, cell-cycle analysis, and CFSE labeling of primary CD34+ CML cells. Specificity of this effect could be demonstrated by cotreatment of K562 cells with imatinib and siRNA against eIF5. In conclusion, through a comparative proteomics approach and further functional analysis, we identified the inhibition of eIF5A hypusination as a promising new approach for combination therapy in BCR-ABL-positive leukemias.
منابع مشابه
Acetylation regulates subcellular localization of eukaryotic translation initiation factor 5A (eIF5A).
Eukaryotic translation initiation factor 5A (eIF5A) is a protein subject to hypusination, which is essential for its function. eIF5A is also acetylated, but the role of that modification is unknown. Here, we report that acetylation regulates the subcellular localization of eIF5A. We identified PCAF as the major cellular acetyltransferase of eIF5A, and HDAC6 and SIRT2 as its major deacetylases. ...
متن کاملThe Drosophila deoxyhypusine hydroxylase homologue nero and its target eIF5A are required for cell growth and the regulation of autophagy
Hypusination is a unique posttranslational modification by which lysine is transformed into the atypical amino acid hypusine. eIF5A (eukaryotic initiation factor 5A) is the only known protein to contain hypusine. In this study, we describe the identification and characterization of nero, the Drosophila melanogaster deoxyhypusine hydroxylase (DOHH) homologue. nero mutations affect cell and organ...
متن کاملPosttranslational hypusination of the eukaryotic translation initiation factor-5A regulates Fusarium graminearum virulence
Activation of eukaryotic translation initiation factor eIF5A requires a posttranslational modification, forming the unique amino acid hypusine. This activation is mediated by two enzymes, deoxyhypusine synthase, DHS, and deoxyhypusine hydroxylase, DOHH. The impact of this enzymatic complex on the life cycle of a fungal pathogen is unknown. Plant pathogenic ascomycetes possess a single copy of t...
متن کاملFrom Protein Synthesis to Molecular Biology: The Appealing Tale of eIF-5A
Posttranslational hypusine modification of lysine 50 of the eukaryotic initiation factor 5A (eIF-5A) is associated with the function of this factor in cell proliferation and differentiation and is involved in tumor formation, progression and maintenance (for a review see ref. 1). In a Molecular Therapy Issue, Francis et al. report that knock down of hypusine formation in eIF-5A through RNA inte...
متن کاملMapping eIF5A binding sites for Dys1 and Lia1: in vivo evidence for regulation of eIF5A hypusination.
The evolutionarily conserved factor eIF5A is the only protein known to undergo hypusination, a unique posttranslational modification triggered by deoxyhypusine synthase (Dys1). Although eIF5A is essential for cell viability, the function of this putative translation initiation factor is still obscure. To identify eIF5A-binding proteins that could clarify its function, we screened a two-hybrid l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 109 4 شماره
صفحات -
تاریخ انتشار 2007